Weak solution for fractional $p(x)$-Laplacian problem with Dirichlet-type boundary condition
نویسندگان
چکیده
منابع مشابه
Existence of weak solutions for a p-Laplacian problem involving Dirichlet boundary condition
Keywords: Dirichlet boundary value problem p-Laplacian Topological degree theory Critical point theory Weak solution a b s t r a c t In this work, by virtue of topological degree theory and critical point theory, we are mainly concerned with the existence of weak solutions for a Dirichlet boundary value problem with the p-Laplacian operator.
متن کاملExistence and Uniqueness of Solutions for a Fractional Boundary Value Problem with Dirichlet Boundary Condition
The authors consider a nonlinear fractional boundary value problem with the Dirichlet boundary condition. An associated Green’s function is constructed as a series of functions by applying spectral theory. Criteria for the existence and uniqueness of solutions are obtained based on it.
متن کاملExistence solutions for new p-Laplacian fractional boundary value problem with impulsive effects
Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...
متن کاملPositive Solution for Boundary Value Problem of Fractional Dierential Equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملPositive solution for boundary value problem of fractional dierential equation
In this paper, we prove the existence of the solution for boundary value prob-lem(BVP) of fractional dierential equations of order q 2 (2; 3]. The Kras-noselskii's xed point theorem is applied to establish the results. In addition,we give an detailed example to demonstrate the main result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methods of Functional Analysis and Topology
سال: 2020
ISSN: 1029-3531
DOI: 10.31392/mfat-npu26_3.2020.08